FRESH 3D Bioprinting a Full-Scale Model of the Human Heart

Mirdamadi E, Tashman JW, Shiwarski DJ, Palchesko RN, Feinberg AW.  ACS Bio. Sci. & Eng. (2020). PMID: 33449644

Recent advances in embedded three-dimensional (3D) bioprinting have expanded the design space for fabricating geometrically complex tissue scaffolds using hydrogels with mechanical properties comparable to native tissues and organs in the human body. The advantage of approaches such as Freeform Reversible Embedding of Suspended Hydrogels (FRESH) printing is the ability to embed soft biomaterials in a thermoreversible support bath at sizes ranging from a few millimeters to centimeters. In this study, we were able to expand this printable size range by FRESH bioprinting a full-size model of an adult human heart from patient-derived magnetic resonance imaging (MRI) data sets. We used alginate as the printing biomaterial to mimic the elastic modulus of cardiac tissue. In addition to achieving high print fidelity on a low-cost printer platform, FRESH-printed alginate proved to create mechanically tunable and suturable models. This demonstrates that large-scale 3D bioprinting of soft hydrogels is possible using FRESH and that cardiac tissue constructs can be produced with potential future applications in surgical training and planning.

Link to Paper

Manuscript PDF

Journal:
ACS Biomaterials Science & Engineering
Year:
2020
PMID:
33449644
DOI:
10.1021/acsbiomaterials.0c01133

Leave a Reply

Your email address will not be published. Required fields are marked *