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Abstract

Purpose: TMEM16A is a calcium-activated chloride channel
that is amplified in a variety of cancers, including 30%of head and
neck squamous cell carcinomas (HNSCCs), raising the possibility
of an anti-apoptotic role in malignant cells. This study investi-
gated this using a multimodal, translational investigation.

Experimental Design: Combination of (i) in vitro HNSCC cell
culture experiments assessing cell viability, apoptotic activation,
and protein expression (ii) in vivo studies assessing similar out-
comes, and (iii) molecular and staining analysis of human
HNSCC samples.

Results: TMEM16A expression was found to correlate with
greater tumor size, increased Erk 1/2 activity, less Bim expres-

sion, and less apoptotic activity overall in human HNSCC.
These findings were corroborated in subsequent in vitro and
in vivo studies and expanded to include a cisplatin-resistant
phenotype with TMEM16A overexpression. A cohort of 41
patients with laryngeal cancer demonstrated that cases that
recurred after chemoradiation failure were associated with a
greater TMEM16A overexpression rate than HNSCC that did
not recur.

Conclusions: Ultimately, this study implicates TMEM16A
as a contributor to tumor progression by limiting apoptosis
and as a potential biomarker of more aggressive disease. Clin
Cancer Res; 23(23); 7324–32. �2017 AACR.

Introduction
Apoptosis is a highly conserved series of cellular events that

leads to programmed cell death. Physiologically, apoptosis plays
a central role in balancing cell growth and cell death, in pro-
cesses like growth & development and in maintaining healthy
tissue homeostasis (1, 2). Mechanistically, apoptosis can be
triggered by an extrinsic pathway, involving extracellular, pro-
apoptotic, ligand–receptor interactions (3), or an intrinsic path-
way, involving the Bcl-2 family of proteins leading to mito-
chondrial permeability changes (4). Ultimately, pro-apoptotic
signals converge and activate the caspase cascade, which works
to dismantle key cellular machinery leading to cell death (5).
Dysregulation at any level of the apoptotic response has been
implicated in a variety of pathological states, including neuro-
degenerative, autoimmune, and neoplastic diseases (3, 6). The

ability to bypass apoptosis is a "Hallmark of Cancer" and is
required for tumorigenesis (7). Furthermore, suppression of
apoptosis is an important mechanism of acquired resistance to
chemotherapy. However, the mechanisms by which cancer cells
prevent apoptosis remain incompletely understood.

TMEM16A (also known as ANO1) belongs to a family of
calcium-activated chloride channels and is the prototypical
member of this family (8). TMEM16A is found on the plasma
membrane and is thought to contribute to maintaining homeo-
static chloride fluxes in a variety of tissues, including cardio-
vascular endothelia and gastrointestinal epithelia (9, 10).
Clinically, TMEM16A overexpression has been demonstrated
in a variety of tumors and is correlated with worse patient
survival in head and neck squamous cell carcinoma (HNSCC;
refs. 11, 12). It has been previously demonstrated that
TMEM16A contributes to proliferation and tumor growth
(11, 13), but its effect on apoptosis has not been explored.
Therefore, we sought to determine if TMEM16A/ANO1 has an
impact on oncogenesis by inhibiting apoptosis.

Materials and Methods
Materials

Cleaved-PARP (D64E10, 5625P), cleaved-caspase 3 (9661S),
PARP (9542), Bid (2002P), Bad (9239P), Bim (2933S), Puma
(4976), pERK1/2 (P-p44/42 MAPK T202/Y204, 9101S), Erk 1/2
(p44/42 MAPK, 9102S), b-actin (4970), and GAPDH (2118)
antibodies were fromCell Signaling Technologies (CST). b-Tubu-
lin (ab6046) antibody was fromAbcam. TMEM16A (Dog-1 sp31,
MA5-16358) antibody was from Thermo Scientific.

CellTiter-Glo and CaspaseGlo were from Promega. Matrigel
was from Corning Life Sciences. Cisplatin was from Sigma.
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Complete Mini Protease Inhibitor Cocktail and PhosStop phos-
phatase inhibitor were fromRoche. Bradford's protein estimation
reagent, and molecular weight markers were from Bio-Rad. Sec-
ondary antibodieswere fromLiCor for usewith the LiCorOdyssey
imaging system.

Cell lines and media
OSC19, FaDu, and UM-SCC-1 cells were obtained from ATCC

and cultured in DMEM and 10% FBS and 1% penicillin–strep-
tomycin. All cells were used for 10 passages and then discarded.
All cell lines were authenticated using commercial SNP analysis
and used within 6 months of authentication.

Control or TMEM16A overexpressing cells were engineered by
transducing viral pBABE-puromycin control or TMEM16A plas-
mid as previously described by Shiwarski in Duvvuri and collea-
gues (11). Cells were selected with puromycin-containing media
48 to 72 hours after transduction.

FaDu cells were engineered to express control scrambled
shRNA or TMEM16A-targeting shRNA in a doxycycline-inducible
manner as previously described by Britschgi in Bill and colleagues
(14, 15). These cells were cultured in DMEM containing 10%
tetracycline-free serum. For experimental use, cells were cultured
in 10 ng/mL doxycycline containing media for 72 hours, in
addition to experimental conditions as noted, to achieve induc-
tionof shRNA.Cells expressing Bcl-2 andBimshRNAwere created
using lentiviral infection of the TMEM16A-shRNA expressing
FaDu cells. Lentiviral particles were generated using a three-
plasmid system in HEK-293T cells. Infection was performed as
described in the TRC Library Production and Performance Pro-
tocols, RNAi Consortium, Broad Institute. shRNA constructs were
obtained from the Broad RNAi Consortium and clone IDs as are
follows: BIM: TRCN0000355973 (shBim-1). The pLKO.1-shRNA
scramble vectorwas obtained fromDr.DavidM. Sabatini through
Addgene (Addgene plasmid 1864).

Cell viability and apoptotic activity assays
For viability assays and apoptosis assays, 5 � 103 cells were

plated in 96-well plates in triplicates per condition and left
untreated as controls or treated as indicated. One hundred
microliters of CellTiter-Glo reagent or CaspaseGlo reagent
was added 24 to 72 hours after treatments, allowed to incubate
for 1 hour on an orbital shaker, and then fluorescence was
read. Viability or apoptotic activity was assessed by normal-
izing readings from treated wells to readings from untreated

control wells. CaspaseGlo reagent generates a fluorescent
signal proportional to the amount of the cleaved effector
caspases 3 and 7.

Western blot assay
Cells were cultured and treated as indicated followed by lysis

in ice cold lysis buffer containing protease and phosphatase
inhibitors. Insoluble material was removed by centrifugation at
13,000 rpm for 10 minutes at 4�C; protein concentration was
subsequently estimated by Bradford's method. For analysis in
Western blots, equal amounts of protein was denatured, sep-
arated in 8% to 12% SDS-PAGE gels, and transferred to nitro-
cellulose membranes. Membranes were incubated with primary
antibodies followed by secondary antibody and imaging in the
LiCor Odyssey system or standard camera luminescence. Den-
sitometry analysis was conducted using signal quantification
software provided in the LiCor Odyssey system. Cropped
images are presented for conciseness and were cropped using
Microsoft PowerPoint (Redmond). All changes to images
(adjusting brightness or contrast) were applied uniformly to
the entire image using the software provided with LiCor Odys-
sey system. Full-length images of all presented blots are avail-
able in supplemental materials.

Tumor xenografts
A total of 1.5 � 106 control or TMEM16A overexpressing

OSC19 or UM-SCC-1 cells were implanted in 100 mL of Matrigel
subcutaneously in nude mice. In OSC19 xenograft, each mouse
had control or TMEM16A overexpressing tumors on either flank
and were treated with vehicle control (60 mL sterile water; n¼ 11)
or cisplatin (3 mg/kg in sterile water; n ¼ 10). At the end point
mice were euthanized in accordance with University of Pittsburgh
guidelines for animal use. Tumors were removed, and weights
were recorded. Lysates of tumors were prepared, and protein was
estimated. Equal amount of protein was separated in 8% gels and
detected in Western blots analyses with the indicated antibodies
in LiCor imaging system (LiCorOdyssey Classic). All experiments
performed in mice were conducted with approval from the
University of Pittsburgh Institutional Animal Care and Use
Committee.

Tissue analysis
Tumor xenografts were formalin fixed, paraffin embedded,

and subsequently stained for Ki67, terminal deoxynucleotidyl
transferase-mediated dUTP nick-end labeling (TUNEL), or
TMEM16A (using anti-TMEM16A antisera; clone SP31,
Thermo Scientific) at core facilities at our institution. TUNEL
scoring was performed by counting the number of positive
nuclei per high-powered field by two independent raters
(authors R.S. and U.D.).

Biochemical analysis of primary human tumor samples
Human tumor samples were obtained from the University of

Pittsburgh Medical Center in accordance with established Uni-
versity of Pittsburgh IRB guidelines. All tumors were removed
from the primary site of malignancy and histologically con-
firmed. Tumors lysates were prepared for Western blot analysis
by using a sonic dismembrator followed by chemical lysis with
lysis buffer with phosphatase and protease inhibitors. Tissue
expression of TMEM16A was assessed using immunohisto-
chemical analysis.

Translational Relevance

The presented study investigates the role that TMEM16A
overexpression plays in head and neck squamous cell carci-
noma (HNSCC) and ties it to a distinct, clinical anti-apo-
ptotic and cisplatin-resistant phenotype, possibly through an
identified molecular mediator: Bim. Ultimately, 30% of
HNSCC demonstrate TMEM16A overexpression, and cisplat-
in resistance is a common clinical occurrence—accordingly,
the potential translational benefit of understanding how
TMEM16A is involved and, in the future, could be targeted,
would be an invaluable resource for a large population of
patients with HNSCC.
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IHC analysis of recurrent laryngeal cancers
Tumors samples were identified in accordance with University

of Pittsburgh Medical Center IRB guidelines. A cohort of patients
were identified retrospectively that were treated initially with
nonsurgical therapy with curative intent (see Fig. 6A, for demo-
graphics). This cohort was then stratified by whether disease
recurred, defined as re-detection of disease at the primary site
after initial management, or whether the disease did not recur.
Sections of the primary tumor tissue were prepared, stained for
TMEM16A, and analyzed for the TMEM16A H-score (H-score ¼
percentage of cells expressing protein � staining intensity).
Author R.S. performed analysis of the tissue sections and assigned
H-scores across all sections. The maximum tumor H-score across
all stained tumor sections was used for analysis. The threshold for
overexpression was defined as greater than the averageH-score for
tumors that did not recur. TMEM16A scoring was compared
between non-recurrent primary tumors (PrimaryNR) versus pri-
mary tumors that went on to recur (PrimaryR). Representative
H&E stain and anti-TMEM16A images for PrimaryNR with aver-
age H-score and PrimaryR with high H-score are available in
Supplementary Fig. S4.

Statistical analysis
Statistical analysis was performed using GraphPad Prism 6 or

Microsoft Excel. All data are reported asmean� SEMunless stated
otherwise. Apaired t test or ANOVAwas used to test significance as
appropriate. P < 0.05 was considered statistically significant.
Linear regression and Fisher exact tests were performed in Graph-
Pad Prism 6 for human tumor data.

Results
TMEM16A expression is correlated with tumor size and
decreased apoptosis in 11 human HNSCC tumors

To begin investigating the role that TMEM16A plays in
apoptosis and cancer, a panel of n ¼ 11 human HNSCC tumors
(Supplementary Fig. S1A) was assembled and assessed for
expression of TMEM16A by Western blot analysis (Fig. 1A).
The TMEM16A signal intensity was quantified to investigate
whether TMEM16A expression correlated with clinical factors
or other proteins. First, TMEM16A expression had a strong,
positive correlation with tumor size at time of resection (R2 ¼
0.71), whereas TMEM16A was modestly, negatively correlated
with cleaved PARP (cl-PARP; R2 ¼ 0.35), a molecular marker of
apoptotic activity; in both cases, the slope of the linear regres-
sion was significantly nonzero (P ¼ 0.0005 and 0.041,
respectively; Fig. 1B).

Earlier studies implicate Erk 1/2 as an intracellular mediator of
the oncogenic capacity of TMEM16A (11). Therefore, the activity of
Erk 1/2, as measured by the phosphorylated Erk 1/2 (pErk 1/2)
fraction, was assessed in the tumor panel. TMEM16A strongly
correlated with pErk 1/2 expression (R2 ¼ 0.51; Fig. 1C) corrob-
orating previous studies. Next, the expression of a number of
apoptotic proteins was measured to see if TMEM16A affected
proteinmediatorsof apoptosis. TMEM16Aexpressionhad a strong,
negative correlation with the pro-apoptotic protein Bim (R2 ¼
0.56; Fig. 1C); this effect was specific to Bim, as similar correlations
were not foundwith a variety of other apoptotic proteins, including
Bad and Puma (Supplementary Fig. S1B). In addition, the slope
of the linear regression linewas significantly nonzero for both pErk
1/2 and Bim (P ¼ 0.0083 and 0.005, respectively).

This data identified an anti-apoptotic clinical phenotype in a
subset of human tumors with greater TMEM16A expression and
implicated a specific protein change, reduced Bim, that could
mediate that phenotype.

TMEM16A overexpression inhibits in vivo apoptotic
activation

Next, UM-SCC-1 control and TMEM16A overexpressing
(TMEM16A) xenografts (Supplementary Fig. S2) were created
as preclinical models of TMEM16A overexpression and to
investigate any effects on apoptosis. TMEM16A overexpressing
tumors demonstrated significantly greater tumor volumes than
controls tumors (Fig. 2A). Subsequent IHC analysis of tumor
samples confirmed in vivo TMEME16A overexpression in the
overexpression group (Fig. 2B) and, furthermore, TMEM16A
overexpressing tumors demonstrated significantly less TUNEL
staining, a marker of apoptosis, than control tumors (Fig. 2C;
representative IHC images Supplementary Fig. S3). Finally,
analysis of tumor lysates demonstrated that TMEM16A over-
expressing tumors contained significantly greater pErk 1/2 and
significantly less Bim (Fig. 2D) than control tumors.

These results corroborated the initial clinical findings and tied
TMEM16A overexpression to an in vitro reduction in apoptotic
activation.

TMEM16A overexpression suppresses in vitro apoptotic
activation in response to cisplatin

To further test the identified link between TMEM16A and
blunted apoptotic activation, scrambled control shRNA
(shScram) or shRNA against TMEM16A (shTMEM16A) was
introduced into FaDu cells, which have high endogenous expres-
sion of TMEM16A. TMEM16A knockdown led to a significant
decrease in cell viability (P ¼ 0.0001); furthermore, this reduc-
tion in viability was due to apoptotic activation, as the addition
of the pan-caspase inhibitor, Q-VD-OPh, prevented the reduc-
tion in cell viability (Fig. 3A). This finding was corroborated
by demonstrating that cl-PARP was eliminated with Q-VD-OPh
treatment (Fig. 3A).

Next, FaDu cells with either shScram or shTMEM16A were
treated with cisplatin, a potent apoptotic stimulus, and
assessed for cell viability (Fig. 3B). FaDu cells treated with
both shTMEM16A and cisplatin had significantly less viability
than shScram treated FaDu cells (P ¼ 0.03 at 10 mmol/L
cisplatin). To clarify whether the observed effect was purely
antiproliferative or pro-apoptotic, these cells were also assessed
for caspase-3 and caspase-7 activity. Again, shTMEM16A FaDu
cells treated with cisplatin demonstrated significantly greater
caspase-3/7 activity at all concentrations of cisplatin treatment
(P ¼ 0.0009 at 10 mmol/L cisplatin). To further corroborate
this, FaDu cells were treated with single-agent or combina-
tion of cisplatin and CaCCInh-AO1, a specific inhibitor of
TMEM16A and assessed for cell viability (Supplementary
Fig. S4). Here again, TMEM16A inhibition along with cisplatin
treatment resulted in significantly less cell viability (P < 0.0001
for CaCCInh-AO1 or cisplatin alone vs. combination) then
with either agent alone.

Next, UM-SCC-1 and OSC19 cells, both with low endoge-
nous TMEM16A, were transfected with either a control or
TMEM16A overexpressing plasmid (Supplementary Fig. S2).
Both control and TMEM16A cells were treated with cisplatin
and assessed for caspase-3 and caspase-7 activation. In both
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UM-SCC-1 and OSC19 cell lines, TMEM16A cells demon-
strated significantly less caspase 3/7 activity relative to control
at all cisplatin concentrations (P ¼ 0.003 and 0.0004 for
UM-SCC-1 and OSC19, respectively, at 20 mmol/L cisplatin
treatment; Fig. 3C).

Furthermore, inhibition of caspase-9, a key mediator of the
intrinsic apoptotic pathway, but not caspase 8 inhibition,
reduced the magnitude of apoptotic activity in UM-SCC-1
control and TMEM16A cells treated with cisplatin (Supple-
mentary Fig. S5). However, there was still significant differ-
ential apoptotic activity between control and TMEM16A cells.

These results demonstrate that TMEM16A expression is able to
modulate apoptosis, both at baseline and, notably, in response to
cisplatin. In addition, this effect was demonstrated in cell lines
with differing endogenous levels of TMEM16A, suggesting that
the effect is generalizable to TMEM16A expression and is not
entirely cell line specific.

TMEM16A protects against cisplatin-induced apoptosis in vivo
To extend the in vitro findings, mice were inoculated with

OSC19 control and TMEM16A cells to explore whether
TMEM16A expression led to in vivo resistance to cisplatin. Mice
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Figure 1.

TMEM16A expression correlates with
tumor size and apoptosis resistance
in human HNSCC tumor samples. A,
n ¼ 11 human HNSCC samples were
assessed for TMEM16A, cl-PARP,
pErk 1/2, and Bim expression by
Western blot analysis. B, TMEM16A
expression had a strong, positive
correlation with tumor size and a
modest, negative correlation with
cl-PARP in human HNSCC samples.
C, TMEM16A expression had a strong,
positive correlation with pErk 1/2
expression and a strong, negative
correlation with Bim. P < 0.05
denotes a significantly nonzero slope
of the trend line. Blots cropped for
conciseness; clinical demographic
information and full-length blots
available in SupplementaryMaterials.
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bearing control and TMEM16A overexpressing tumors were trea-
ted with either vehicle (n ¼ 11) or cisplatin (n ¼ 10). Control
tumors treated with vehicle were significantly smaller than
TMEM16A overexpressing tumors treated with vehicle
(P < 0.0001 at 28 days). Furthermore, the addition of cisplatin
appeared to prevent the growth of control tumors (P ¼ 0.0001
vehicle-treated control vs. cisplatin-treated control at 28 days),
whereas it had no effect on the TMEM16A overexpressing tumors
(Fig. 4A). As expected, OSC19 control tumors demonstrated
significantly greater IHC TUNEL staining (P ¼ 0.006), a marker
of apoptotic activity, with cisplatin treatment than the TMEM16A
overexpressing tumors treated with cisplatin (Fig. 4B and C).

TMEM16A knockdown-induced apoptosis requires Bim
expression

To clarify the observed inverse relation between TMEM16A
and Bim, Bcl-2, a protein that opposes the action of Bim, was
overexpressed in FaDu cells treated with shTMEM16A. As
before, shTMEM16A led to a decrease in cell viability and an
increase in cleaved PARP, indicating apoptotic cell death.
However, overexpression of Bcl-2 was able to prevent reduction
in cell viability and PARP cleavage (Fig. 5A and C). To dem-

onstrate the role that Bim plays in TMEM16A knockdown-
induced apoptosis more directly, shRNA against Bim (shBim)
was introduced in the FaDu cells. Control, scrambled shRNA
(shScram) had no effect in preventing TMEM16A knockdown-
induced apoptosis, whereas shBim prevented PARP cleavage
and ameliorated the reduction in cell viability following
TMEM16A knockdown (Fig. 5B and D).

Taken together these data indicate that TMEM16A knockdown
induced apoptosis proceeds in a Bim-dependent manner.

Recurrence of laryngeal cancer is associated with greater
rates of TMEM16A overexpression

Finally, a panel of 41 primary laryngeal cancer tumors was
assembled to further test the clinical impact of TMEM16A
overexpression. This cohort was then separated by the clinical
progression of the disease: whether the tumor did not (n ¼ 27)
or did recur (n ¼ 14). The clinical and demographic back-
ground of the panel was found to be proportional between the
two groups (Fig. 6A).

TMEM16A has been shown to be overexpressed in about
30% of HNSCC, according to data presented in The Cancer
Genome Atlas (TCGA; refs. 16, 17). Analysis of the maximum
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Figure 2.

TMEM16A correlates with in vivo Erk 1/2 activation and suppression of Bim. A and B, UM-SCC1 TMEM16A overexpressing (TMEM16A) tumor xenografts
were significantly larger than control tumor xenografts. C, UM-SCC-1 TMEM16A tumors demonstrated significantly less TUNEL staining than control tumors.
D, UM-SCC1 TMEM16A overexpressing tumors expressed significantly greater pErk 1/2 with selective suppression of Bim. All data expressed as mean � SEM
relative to control conditions; � , P < 0.05. Blots cropped for conciseness; full-length blots available in the Supplementary Materials.
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TMEM16A H-score across the two clinical subsets revealed that
a significantly greater proportion of tumors that went on to
recur overexpressed TMEM16A (n ¼ 10/14, 71%) than tumors
that did not recur (n ¼ 7/27, 25.9% consistent with TCGA
overexpression rate; �, P ¼ 0.023; Fig. 6B).

Ultimately, this data underscore the important connection
between TMEM16A and clinical disease burden, possibly medi-

ated through the described Bim-mediated anti-apoptotic
phenotype.

Discussion
Ion channels, specifically chloride channels, have been pos-

tulated to be involved in the control of cell growth and cell-
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TMEM16A inhibits apoptosis induced by cisplatin. A, Pan-caspase inhibition with Q-VD-OPh increased FaDu cell viability following TMEM16A knockdown
and prevented PARP cleavage. B, FaDu cells treated with shTMEM16A and cisplatin demonstrated significantly less viability and significantly greater
caspase-3/7 activity at all concentrations of cisplatin. C, UM-SCC-1 and OSC19 TMEM16A overexpressing cells demonstrate significantly less caspase 3/7
activation at all concentrations of cisplatin treatment relative to control cells. All data expressed as mean � SEM relative to control conditions; � , P < 0.05;
��� , P < 0.001. Blots presented with tubulin-normalized densitometric quantification and cropped for conciseness; full-length blots available in the
Supplementary Materials.
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cycle regulation (9, 10, 18). The calcium-activated chloride
channel, TMEM16A/ANO1 is frequently overexpressed in epi-
thelial malignancies and contributes to tumor growth and
proliferation (11). In addition, it has been shown that patients
with HNSCC malignancies overexpressing TMEM16A have
worse survival outcomes (11, 12). However, the role of
TMEM16A in mediating poor outcomes and the control of
apoptosis and cell death remains unclear.

The data presented here demonstrate a reduction in apopto-
tic activity, including in response to cisplatin, in multiple
models of TMEM16A overexpression. Furthermore, it identifies
a specific reduction in the pro-apoptotic protein, Bim, as a key
event in mediating this effect. This molecular phenotype was
found to also exist in a panel 11 human HNSCC tumors.
Finally, analysis of 41 human HNSCC samples found a greater
proportion of TMEM16A overexpression in primary tumors
that went on to recur (i.e., more aggressive clinical disease)
than tumors that did not recur. In conjunction with the pre-
clinical data, these clinical observations provide strong evi-
dence for the translational importance of TMEM16A and a
possible mechanism underlying the clinical phenomena of
more aggressive disease.

The present findings suggest that TMEM16A inhibition or
knockdown results in apoptotic cell death. Furthermore, recent

data using the RIP-kinase inhibitor, necrostatin, suggest that
TMEM16A knockdown–induced cell death does not proceed in
a necroptotic manner (19). Although this does not preclude the
involvement of other cell death pathways (e.g., autophagy), it
does suggest that apoptotic cell death is a key mediator.

Recent investigations into recurrent and metastatic HNSCC
found a 10.4% amplification rate of chromosomal locus
11q13, which houses TMEM16A (20)—a much lower rate of
amplification than the �30% amplification rate reported by the
TCGA in primary HNSCC samples (17). Consistent with this
data, analysis of the recurrent tumor tissue of 10 of the 14 cases
of laryngeal cancer that recurred (data not shown), demon-
strated a nonsignificant reduction in maximum H-score as
compared to the primary tumor tissue. These data corroborate
the analysis of recurrent and metastatic HNSCC and, in the
context of this study, could support the idea that different
subpopulations of the cancer expressing different protein pro-
files are preferentially selected for during different times of
cancer progression.

Beyond strongly supporting TMEM16A as a protein that
contributes to oncogenicity, this study has important transla-
tional implications. First, the human tumor analysis strongly
suggests that TMEM16A expression is associated with larger
tumors, likely by avoiding apoptosis through the mechanisms
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Figure 4.

TMEM16A contributes to in vivo
cisplatin resistance. A, OSC19
TMEM16A overexpressing (TMEM16A)
tumor xenografts (n ¼ 10) were
significantly larger than control tumor
xenografts (n ¼ 11) and were not
affected by treatment with cisplatin.
Cisplatin treatment initiated at
arrowhead. B and C, OSC19 TMEM16A
overexpressing tumors experienced
significantly less apoptosis as shown
by reduced TUNEL staining on IHC
section. All data expressed as mean�
SEM relative to control conditions,
unless otherwise noted; � , P < 0.05;
�� , P < 0.01; ���� , P < 0.0001.
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presented. Furthermore, the data suggest that TMEM16A over-
expression may be linked to disease recurrence, a major cause of
morbidity and mortality in the HNSCC population. Accord-
ingly, TMEM16A has the potential to be a useful clinical
biomarker to predict specific facets of tumor progression
(i.e., chemotherapy resistance and disease recurrence), beyond
poor survival outcomes.

Cisplatin-based chemotherapy is a cornerstone of treatment
for a variety of human malignancies, including HNSCC. Clin-
ically, resistance to cisplatin therapy is a major problem and
contributes to poor patient outcomes (21). Multiple mechan-
isms of resistance have been proposed, including reduced
intracellular accumulation of drug, drug inactivation, and
alterations in DNA damage-sensing mechanisms (22). Of par-
ticular interest to the current discussion, is the role that Erk 1/2
may play in mediating resistance. Evidence is mixed regarding
the effect that Erk 1/2 has—some work suggest that Erk 1/2
sensitizes cells to cisplatin therapy (23) whereas others suggest
that Erk 1/2 activity is associated with resistance to cisplatin
therapy (23, 24). Knowing that TMEM16A drives Erk 1/2
activity and is correlated with reduced apoptosis in response
to stimuli like cisplatin, supports the latter possibility. Ulti-
mately, this study provides strong evidence that, in a portion of
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Figure 5.

Bim is a key mediator of TMEM16A knockdown-
induced apoptosis. A and C, Overexpression of
Bcl-2 prevented PARP cleavage (cl-PARP) and
viability loss in FaDu cells following TMEM16A
knockdown. B and D, shRNA knockdown of Bim
(shBim) prevented PARP cleavage and viability
loss in FaDu cells following TMEM16A knockdown.
All data expressed as mean � SEM relative to
control conditions; �, P < 0.05. Blots cropped for
conciseness; full-length blots available in the
Supplementary Materials.

Figure 6.
Recurrence of laryngeal cancer is associated with greater rates of TMEM16A
overexpression. A, Clinical and demographic data of n ¼ 41 cases of
laryngeal cancer; cases were separated by the absence (n ¼ 27) or
presence (n ¼ 14) of disease recurrence. P-values calculated by two-sided
Fisher exact test. B, Primary tumors that did not recur (PrimaryNR) had a
significantly smaller proportion of tumors overexpressing TMEM16A than
primary tumors that did recur (PrimaryR). Threshold of overexpression
(red dotted line) was defined as the mean H-score of PrimaryNR. Lines
represent mean � 95% CI. �, P < 0.05 calculated by Fisher exact test.
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cisplatin-resistant malignancies, overexpression of TMEM16A
may lead to inhibition of apoptosis and subsequent cisplatin
resistance. Furthermore, this raises the possibility that phar-
macologic inhibition of either TMEM16A or its relevant down-
stream effectors (i.e., ERK 1/2) could be strategically used to
overcome cisplatin-resistant malignancies in TMEM16A expres-
sing malignancies.
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